The C. elegans ATG101 homolog EPG-9 directly interacts with EPG-1/Atg13 and is essential for autophagy.
نویسندگان
چکیده
Autophagy is an evolutionarily conserved catabolic process that involves the engulfment of cytoplasmic contents in a closed double-membrane structure, called the autophagosome, and their subsequent delivery to the vacuole/lysosomes for degradation. Genetic screens in Saccharomyces cerevisiae have identified more than 30 autophagy-related (Atg) genes that are essential for autophagosome formation. Here we isolated a novel autophagy gene, epg-9, whose loss of function causes defective autophagic degradation of a variety of protein aggregates during C. elegans embryogenesis. Mutations in epg-9 also reduce survival of animals under food depletion conditions. epg-9 mutants exhibit autophagy phenotypes characteristic of those associated with loss of function of unc-51/Atg1 and epg-1/Atg13. epg-9 encodes a protein with significant homology to mammalian ATG101. EPG-9 directly interacts with EPG-1/Atg13. Our study indicates that EPG-9 forms a complex with EPG-1 in the aggrephagy pathway in C. elegans.
منابع مشابه
epg-1 functions in autophagy-regulated processes and may encode a highly divergent Atg13 homolog in C. elegans.
Autophagy is an evolutionarily conserved intracellular catabolic system for degradation of long-lived proteins or damaged organelles. In this study, we have identified and characterized a new gene, epg-1, that plays a role in the autophagy pathway in C. elegans. Loss of function of epg-1 causes defects in various autophagy-regulated processes, including degradation of aggregate-prone proteins a...
متن کاملThe coiled-coil domain protein EPG-8 plays an essential role in the autophagy pathway in C. elegans.
Macroautophagy (hereafter referred to as autophagy) involves the formation of a closed, double membrane structure, called the autophagosome. Most of the Atg proteins that are essential for autophagosome formation are evolutionarily conserved between yeast and higher eukaryotes. The functions of some Atg proteins, however, are mediated by highly divergent proteins in mammalian cells. In this stu...
متن کاملThe scaffold protein EPG-7 links cargo–receptor complexes with the autophagic assembly machinery
The mechanism by which protein aggregates are selectively degraded by autophagy is poorly understood. Previous studies show that a family of Atg8-interacting proteins function as receptors linking specific cargoes to the autophagic machinery. Here we demonstrate that during Caenorhabditis elegans embryogenesis, epg-7 functions as a scaffold protein mediating autophagic degradation of several pr...
متن کاملThe WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes.
PtdIns(3)P plays critical roles in the autophagy pathway. However, little is known about how PtdIns(3)P effectors act with autophagy proteins in autophagosome formation. Here we identified an essential autophagy gene in C. elegans, epg-6, which encodes a WD40 repeat-containing protein with PtdIns(3)P-binding activity. EPG-6 directly interacts with ATG-2. epg-6 and atg-2 regulate progression of ...
متن کاملC. elegans Screen Identifies Autophagy Genes Specific to Multicellular Organisms
The molecular understanding of autophagy has originated almost exclusively from yeast genetic studies. Little is known about essential autophagy components specific to higher eukaryotes. Here we perform genetic screens in C. elegans and identify four metazoan-specific autophagy genes, named epg-2, -3, -4, and -5. Genetic analysis reveals that epg-2, -3, -4, and -5 define discrete genetic steps ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Autophagy
دوره 8 10 شماره
صفحات -
تاریخ انتشار 2012